organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-4-[(4-Diethylamino-2-hydroxybenzylidene)amino]benzonitrile

Ming-Jen Chang, Tzu-Chien Fang, Hsing-Yang Tsai, Ming-Hui Luo and Kew-Yu Chen*

Department of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan

Correspondence e-mail: kyuchen@fcu.edu.tw

Received 20 February 2012; accepted 23 February 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.055; wR factor = 0.171; data-to-parameter ratio = 16.4.

The title compound, $C_{18}H_{19}N_3O$, displays an *E* conformation with respect to the C=N double bond. The dihedral angle between the mean planes of the two benzene rings is 24.49 (3)°. An intramolecular $O-H \cdots N$ hydrogen bond generates an *S*(6) ring. In the crystal, molecules are linked by nonclassical intermolecular $C-H \cdots O$ hydrogen bonds to form an infinite one-dimensional chain along [010], generating a *C*(8) motif.

Related literature

For the preparation of the title compound, see: Shirinian *et al.* (2010). For the applications of proton transfer dyes, see: Chen & Pang (2010); Chuang *et al.* (2011); Han *et al.* (2010); Helal *et al.* (2010); Ikeda *et al.* (2010); Ito *et al.* (2011); Lim *et al.* (2011); Lins *et al.* (2010); Maupin *et al.* (2011); Santos *et al.* (2011); Tang *et al.* (2011). For related structures, see: Blagus & Kaitner (2011); Chen *et al.* (2011); Guo (2010); Manvizhi *et al.* (2011); Wang *et al.* (2010).

Experimental

Crystal data	
$C_{18}H_{19}N_{3}O$	a = 15.361 (3) Å
$M_r = 293.36$	b = 12.118 (2) Å
Monoclinic, $P2_1/c$	c = 8.7317 (14) Å

$\beta = 100.717 \ (4)^{\circ}$
$V = 1597.0 (5) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker 2001) T_{min} = 0.436, T_{max} = 1.000

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ 191 parameters $wR(F^2) = 0.171$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.13$ e Å⁻³3136 reflections $\Delta \rho_{min} = -0.22$ e Å⁻³

Table 1		
Hydrogen-bond	geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O−H0A···N2	0.82	1.84	2.572 (3)	148
$C4 - H4A \cdots O^{\circ}$	0.93	2.60	3.334 (3)	137

 $\mu = 0.08 \text{ mm}^{-1}$ T = 295 K

 $R_{\rm int} = 0.054$

 $0.42 \times 0.35 \times 0.10 \text{ mm}$

8867 measured reflections

3136 independent reflections

1405 reflections with $I > 2\sigma(I)$

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the National Science Council (grant No. NSC 99-2113-M-035-001-MY2) and Feng Chia University in Taiwan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2339).

References

- Blagus, A. & Kaitner, B. (2011). Acta Cryst. E67, 01423.
- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, K.-Y., Fang, T.-C., Chang, M.-J., Tsai, H.-Y. & Luo, M.-H. (2011). Acta Cryst. E67, o2862.
- Chen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914–1918.
- Chuang, W.-T., Hsieh, C.-C., Lai, C.-H., Lai, C.-H., Shih, C.-W., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Org. Chem. 76, 8189–8202.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Guo, J.-B. (2010). Acta Cryst. E66, o2689.
- Han, D. Y., Kim, J. M., Kim, J., Jung, H. S., Lee, Y. H., Zhang, J. F. & Kim, J. S. (2010). *Tetrahedron Lett.* **51**, 1947–1951.
- Helal, A., Lee, S. H., Kim, S. H. & Kim, H.-S. (2010). Tetrahedron Lett. 51, 3531–3535.
- Ikeda, S., Toganoh, M., Easwaramoorthi, S., Lim, J. M., Kim, D. & Furuta, H. (2010). J. Org. Chem. 75, 8637–8649.
- Ito, Y., Amimoto, K. & Kawato, T. (2011). Dyes Pigm. 89, 319-323.
- Lim, C.-K., Seo, J., Kim, S., Kwon, I. C., Ahn, C.-H. & Park, S. Y. (2011). Dyes Pigm. 90, 284–289.
- Lins, G. O. W., Campo, L. F., Rodembusch, F. S. & Stefani, V. (2010). Dyes Pigm. 84, 114–120.
- Manvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500.

Maupin, C. M., Castillo, N., Taraphder, S., Tu, C., McKenna, R., Silverman, D. N. & Voth, G. A. (2011). J. Am. Chem. Soc. 133, 6223–6234.

Santos, R. C., Silva Faleiro, N. V., Campo, L. F., Scroferneker, M. L., Corbellini, V. A., Rodembusch, F. S. & Stefani, V. (2011). *Tetrahedron Lett.* 52, 3048– 3053.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Shirinian, V. Z., Shimkin, A. A., Mailian, A. K., Tsyganov, D. V., Popov, L. D. & Krayushkin, M. M. (2010). *Dyes Pigm.* 84, 19–24.
- Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738– 17745.
- Wang, X.-C., Xu, H. & Qian, K. (2010). Acta Cryst. E66, o528.

supplementary materials

Acta Cryst. (2012). E68, o904-o905 [doi:10.1107/S1600536812008082]

(E)-4-[(4-Diethylamino-2-hydroxybenzylidene)amino]benzonitrile

Ming-Jen Chang, Tzu-Chien Fang, Hsing-Yang Tsai, Ming-Hui Luo and Kew-Yu Chen

Comment

The excited-state intramolecular proton transfer (*ESIPT*) reaction of *N*-(2-hydroxybenzylidene)aniline derivatives has been investigated, which incorporates transfer of a hydroxy proton to the imine nitrogen through an intramolecular sixmembered-ring hydrogen-bonding system. The proton transfer dyes have found many important applications. Prototypical examples are probes for solvation dynamics (Chen & Pang, 2010; Lins *et al.*, 2010) and biological environments (Lim *et al.*, 2011; Maupin *et al.*, 2011), photochromic materials (Ito *et al.*, 2011), near-infrared fluorescent dyes (Ikeda *et al.*, 2010), fluorescence microscopy imaging (Santos *et al.*, 2011), chemosensors (Han *et al.*, 2010; Helal *et al.*, 2010) and recent application in the field of organic light emitting devices (Chuang *et al.*, 2011; Tang *et al.*, 2011).

The molecular structure of the title compound is shown in Fig. 1. The molecule displays a *trans* configuration about the central C=N imine double bond (Blagus & Kaitner, 2011; Guo, 2010; Manvizhi *et al.*, 2011). The dihedral angle between the mean plane of two benzene rings is 24.49 (3)° (Wang *et al.*, 2010) and an intramolecular O–H···N hydrogen bond (Table 1) generates an S(6) ring (Chen *et al.*, 2011). In the crystal (Fig. 2), molecules are linked by non-classical intermolecular C–H···O hydrogen bonds (Table 1) to form an infinite one-dimensional chain along [0 1 0], generating a C(8) motif.

Experimental

The title compound was synthesized by the condensation reaction of 4-(diethylamino)-2-hydroxybenzaldehyde and 4aminobenzonitrile according to the literature (Shirinian *et al.*, 2010). Yellow parallelepiped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from a chloroform solution.

Refinement

H atoms bonded to O and C atoms were located in a difference electron density map. The hydroxy H atom was freely refined, and other H atoms positioned geometrically and refined using a riding model, with C–H = 0.93Å-0.97Å and U_{iso} (H) = $1.2(1.5)U_{eq}$ (C)].

Computing details

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Figure 1

The molecular structure of the title compound, showing the atom-labelling scheme and the intramolecular O–H···N hydrogen bond (red dashed line). Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Figure 2

A section of the crystal packing of the title compound, viewed along the *a* axis. Green dashed lines denote the nonclassical intermolecular C4–H4A…O hydrogen bonds.

(E)-4-[(4-Diethylamino-2-hydroxybenzylidene)amino]benzonitrile

Crystal data	
$C_{18}H_{19}N_3O$	V = 1597.0 (5) Å ³
$M_r = 293.36$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 624
Hall symbol: -P 2ybc	$D_{\rm x} = 1.220 {\rm ~Mg} {\rm ~m}^{-3}$
a = 15.361 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 12.118 (2) Å	Cell parameters from 1646 reflections
c = 8.7317 (14) Å	$\theta = 2.2 - 22.6^{\circ}$
$\beta = 100.717 \ (4)^{\circ}$	$\mu=0.08~\mathrm{mm^{-1}}$

T = 295 KParallelepiped, yellow

Data collection

Bruker SMART CCD	8867 measured reflections
diffractometer	3136 independent reflections
Radiation source: fine-focus sealed tube	1405 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.054$
φ and ω scans	$\theta_{\rm max} = 26.1^{\circ}, \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 18$
(SADABS; Bruker 2001)	$k = -14 \rightarrow 14$
$T_{\min} = 0.436, T_{\max} = 1.000$	$l = -7 \rightarrow 10$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from

Least-squares matrix. run	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.171$	neighbouring sites
S = 1.02	H-atom parameters constrained
3136 reflections	$w = 1/[\sigma^2(F_o^2) + (0.075P)^2]$
191 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.13 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

 $0.42 \times 0.35 \times 0.10 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0	-0.12526 (16)	-0.02917 (13)	0.1327 (2)	0.0914 (6)	
H0A	-0.0756	-0.0162	0.1827	0.137 (16)*	
N1	0.3699 (2)	0.1233 (3)	0.8181 (4)	0.1306 (11)	
N2	0.01778 (14)	0.08093 (15)	0.2272 (3)	0.0735 (6)	
N3	-0.34058 (17)	0.11544 (19)	-0.2774 (3)	0.0937 (6)	
C1	0.3116 (2)	0.1190 (2)	0.7158 (4)	0.0969 (9)	
C2	0.23844 (18)	0.1117 (2)	0.5869 (3)	0.0811 (7)	
C3	0.20738 (19)	0.2036 (2)	0.4999 (4)	0.0871 (8)	
H3A	0.2351	0.2714	0.5233	0.105*	
C4	0.13636 (18)	0.1961 (2)	0.3796 (3)	0.0810 (8)	
H4A	0.1161	0.2590	0.3230	0.097*	
C5	0.09401 (18)	0.09504 (19)	0.3410 (3)	0.0702 (7)	
C6	0.1265 (2)	0.0040 (2)	0.4290 (3)	0.0865 (8)	
H6A	0.0992	-0.0641	0.4061	0.104*	
C7	0.1975 (2)	0.0111 (2)	0.5485 (3)	0.0896 (8)	

H7A	0.2185	-0.0518	0.6043	0.107*
C8	-0.00756 (15)	0.14955 (19)	0.1149 (3)	0.0701 (5)
H8A	0.0292	0.2083	0.1014	0.084*
C9	-0.08947 (16)	0.13804 (18)	0.0117 (3)	0.0701 (5)
C10	-0.11940 (19)	0.21569 (19)	-0.1058 (3)	0.0776 (8)
H10A	-0.0825	0.2744	-0.1187	0.093*
C11	-0.1997 (2)	0.2089 (2)	-0.2014 (3)	0.0807 (8)
H11A	-0.2159	0.2620	-0.2784	0.097*
C12	-0.25904 (18)	0.1226 (2)	-0.1858 (3)	0.0749 (7)
C13	-0.23028 (19)	0.04469 (19)	-0.0681 (3)	0.0778 (7)
H13A	-0.2681	-0.0127	-0.0535	0.093*
C14	-0.14852 (19)	0.05040 (18)	0.0257 (3)	0.0706 (7)
C15	-0.3678 (2)	0.1867 (3)	-0.4140 (3)	0.1043 (10)
H15A	-0.4051	0.1449	-0.4956	0.125*
H15B	-0.3156	0.2101	-0.4532	0.125*
C16	-0.4175 (2)	0.2868 (3)	-0.3755 (4)	0.1351 (13)
H16A	-0.4337	0.3316	-0.4670	0.203*
H16B	-0.3805	0.3287	-0.2954	0.203*
H16C	-0.4700	0.2639	-0.3394	0.203*
C17	-0.40588 (19)	0.0308 (2)	-0.2501 (3)	0.0937 (6)
H17A	-0.4654	0.0586	-0.2864	0.112*
H17B	-0.3990	0.0167	-0.1392	0.112*
C18	-0.3941 (3)	-0.0743 (3)	-0.3325 (5)	0.1237 (12)
H18A	-0.3371	-0.1052	-0.2905	0.164 (17)*
H18B	-0.3979	-0.0598	-0.4417	0.20 (2)*
H18C	-0.4396	-0.1255	-0.3185	0.187 (17)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0	0.1181 (17)	0.0591 (11)	0.0989 (14)	-0.0112 (10)	0.0253 (13)	0.0149 (10)
N1	0.110 (2)	0.132 (3)	0.143 (3)	0.0031 (19)	0.005 (2)	0.009 (2)
N2	0.0928 (16)	0.0518 (12)	0.0824 (15)	0.0057 (11)	0.0329 (13)	-0.0054 (11)
N3	0.1002 (14)	0.0906 (14)	0.0938 (13)	-0.0076 (10)	0.0270 (11)	0.0048 (11)
C1	0.089 (2)	0.091 (2)	0.115 (3)	0.0063 (19)	0.030 (2)	0.008 (2)
C2	0.0857 (19)	0.0719 (18)	0.093 (2)	0.0088 (16)	0.0367 (16)	0.0002 (16)
C3	0.097 (2)	0.0649 (17)	0.104 (2)	-0.0063 (15)	0.0315 (18)	-0.0012 (16)
C4	0.099 (2)	0.0546 (15)	0.094 (2)	0.0036 (14)	0.0300 (18)	0.0045 (14)
C5	0.0879 (18)	0.0504 (15)	0.0823 (18)	0.0087 (13)	0.0416 (15)	-0.0015 (13)
C6	0.113 (2)	0.0522 (16)	0.099 (2)	0.0024 (15)	0.0320 (19)	-0.0009 (15)
C7	0.114 (2)	0.0623 (18)	0.097 (2)	0.0123 (16)	0.031 (2)	0.0082 (15)
C8	0.0912 (13)	0.0506 (9)	0.0793 (14)	-0.0041 (10)	0.0439 (10)	-0.0043 (10)
C9	0.0912 (13)	0.0506 (9)	0.0793 (14)	-0.0041 (10)	0.0439 (10)	-0.0043 (10)
C10	0.107 (2)	0.0544 (15)	0.0822 (18)	-0.0098 (14)	0.0462 (17)	0.0021 (14)
C11	0.109 (2)	0.0652 (16)	0.0757 (18)	-0.0014 (16)	0.0364 (17)	0.0059 (13)
C12	0.0949 (19)	0.0610 (15)	0.0773 (18)	-0.0038 (15)	0.0380 (16)	-0.0025 (13)
C13	0.099 (2)	0.0571 (15)	0.0863 (19)	-0.0138 (14)	0.0393 (16)	-0.0013 (14)
C14	0.100 (2)	0.0471 (13)	0.0736 (17)	0.0011 (14)	0.0384 (16)	0.0006 (12)
C15	0.119 (2)	0.116 (3)	0.079 (2)	-0.010 (2)	0.0204 (18)	0.0069 (18)
C16	0.160 (3)	0.121 (3)	0.126 (3)	0.040 (3)	0.032 (2)	0.031 (2)

supplementary materials

C17	0.1002 (14)	0.0906 (14)	0.0938 (13)	-0.0076 (10)	0.0270 (11)	0.0048 (11)		
<u>C18</u>	0.134 (4)	0.110 (3)	0.135 (4)	-0.024 (3)	0.048 (3)	-0.024 (2)		
Geome	tric parameters (Å	ĵo)						
0 - CI	4	1.344 (3))	C9—C10		1.405 (3)		
O—HU	DA	0.8200		C9—C14		1.41/(3)		
NI-C		1.143 (4))			1.357 (3)		
N2C	·8 /5	1.290 (3))	C10—H10A		0.9300		
N2—C	-5 110	1.398 (3))			1.410 (3)		
N3-C	12	1.358 (3))	CII—HIIA		1,405,(2)		
N3-C	17	1.484 (3))	C12C13		1.405 (3)		
$N_3 - C$	2	1.409 (3))	C13 - C14		1.308(3)		
$C_1 - C_2$	2	1.437 (4))	С15—ПІЗА		1 504 (4)		
$C_2 - C_2$	3 7	1.363 (3))	C15 - C10		1.304 (4)		
$C_2 - C_2$	1	1.363 (3))	С15—Н15В		0.9700		
	4 3 Λ	1.309 (5))	С15—1115В		0.9700		
C_{3}	5	1 308 (3)	N N	C16_H16R		0.9000		
C4—C		1.398 (5))	C16_H16C		0.9000		
C_{-1}	6	1 384 (3))	C10-1110C C17-C18		1 490 (4)		
C6-C	7	1 365 (3))	C17—H17A		0.9700		
С6—Н	, 6A	0.9300)	C17—H17B		0.9700		
С7—Н	7A	0.9300		C18—H18A		0.9600		
C8—C	9	1.412 (3))	C18—H18B		0.9600		
С8—Н	8A	0.9300	,	C18—H18C		0.9600		
C14—	O—H0A	109.5		C12—C11—H11A		119.5		
C8—N	2—C5	123.8 (2))	N3-C12-C13		121.2 (2)		
C12—1	N3—C17	121.8 (2))	N3-C12-C11	122.2 (3)			
C12—1	N3—C15	122.2 (2))	C13—C12—C11		116.6 (3)		
C17—1	N3—C15	116.0 (2))	C14—C13—C12		122.2 (2)		
N1—C	1—C2	179.0 (4))	C14—C13—H13A		118.9		
С3—С	2—С7	118.8 (3))	C12—C13—H13A		118.9		
С3—С	2—C1	121.3 (3))	O-C14-C13		118.4 (2)		
С7—С	2—C1	119.9 (3))	O-C14-C9		120.4 (3)		
С2—С	3—C4	120.8 (3))	C13—C14—C9		121.2 (2)		
С2—С	3—НЗА	119.6		N3—C15—C16	111.8 (2)			
C4—C	3—H3A	119.6		N3—C15—H15A		109.2		
С3—С	4—C5	120.8 (3))	C16—C15—H15A		109.2		
С3—С	4—H4A	119.6		N3—C15—H15B		109.2		
C5—C	4—H4A	119.6		C16—C15—H15B		109.2		
N2-C	5-C6	117.7 (2))	HI5A—CI5—HI5I	В	107.9		
N2-C	5-04	124.7 (2))	CI5-CI6-HI6A		109.5		
C6-C	5-04	117.5 (3))	UID-UID-HI6B	D	109.5		
C_{1}		121.9 (3))	HIDA-CIO-HIDI	5	109.5		
C_{2}	o—HoA	119.1			~	109.5		
C = C	0—H0A 7 C6	119.1	,	птоА—Сто—Н160		109.3		
$C_2 - C_2$	7 H7A	120.3 (3))	$\frac{110D}{110} - \frac{10}{10} - \frac{100}{10}$	0	107.3		
$C_2 - C$	/—11/A	119.9		113-01/-010		111.2 (2)		

С6—С7—Н7А	119.9	N3—C17—H17A	109.3
N2—C8—C9	121.9 (2)	C18—C17—H17A	109.3
N2—C8—H8A	119.0	N3—C17—H17B	109.3
С9—С8—Н8А	119.0	C18—C17—H17B	109.3
C10—C9—C14	115.9 (3)	H17A—C17—H17B	108.0
C10—C9—C8	122.1 (2)	C17—C18—H18A	109.5
C14—C9—C8	121.9 (2)	C17—C18—H18B	109.5
C11—C10—C9	123.0 (2)	H18A—C18—H18B	109.5
C11—C10—H10A	118.5	C17—C18—H18C	109.5
C9—C10—H10A	118.5	H18A—C18—H18C	109.5
C10—C11—C12	121.0 (2)	H18B—C18—H18C	109.5
C10-C11-H11A	119.5		
C7—C2—C3—C4	1.2 (4)	C17—N3—C12—C13	4.9 (4)
C1—C2—C3—C4	-178.5 (2)	C15—N3—C12—C13	-171.7 (2)
C2—C3—C4—C5	-0.6 (4)	C17—N3—C12—C11	-173.9 (2)
C8—N2—C5—C6	-163.3 (2)	C15—N3—C12—C11	9.5 (4)
C8—N2—C5—C4	21.3 (3)	C10-C11-C12-N3	178.3 (2)
C3—C4—C5—N2	175.6 (2)	C10-C11-C12-C13	-0.5 (3)
C3—C4—C5—C6	0.2 (4)	N3-C12-C13-C14	-179.8 (2)
N2-C5-C6-C7	-176.2 (2)	C11—C12—C13—C14	-1.0 (3)
C4—C5—C6—C7	-0.5 (4)	C12—C13—C14—O	-178.2 (2)
C3—C2—C7—C6	-1.5 (4)	C12—C13—C14—C9	2.1 (4)
C1—C2—C7—C6	178.2 (2)	C10—C9—C14—O	178.8 (2)
C5—C6—C7—C2	1.1 (4)	C8—C9—C14—O	-4.4 (3)
C5—N2—C8—C9	-173.49 (19)	C10-C9-C14-C13	-1.5 (3)
N2-C8-C9-C10	176.6 (2)	C8—C9—C14—C13	175.3 (2)
N2-C8-C9-C14	0.0 (3)	C12—N3—C15—C16	-95.1 (3)
C14—C9—C10—C11	0.0 (3)	C17—N3—C15—C16	88.1 (3)
C8—C9—C10—C11	-176.8 (2)	C12—N3—C17—C18	-87.4 (3)
C9—C10—C11—C12	1.0 (4)	C15—N3—C17—C18	89.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H…A
O—H0 <i>A</i> …N2	0.82	1.84	2.572 (3)	148
C4—H4A····O ⁱ	0.93	2.60	3.334 (3)	137

Symmetry code: (i) -x, y+1/2, -z+1/2.